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Abstract 

A statistical calibration problem is a kind of inverse prediction, or inverse regression. First of all we consider 

unvariate calibration, then we extend this idea to multivariate case. Suppose we want to measure the amount of 

chemical, x, in a sample. Direct measurement is very difficult or expensive or time consuming.  Hence we 

consider a related measurement, y, which is easy and inexpensive to obtain. Now we prepare N samples with 

known amounts of the chemical xi, i = 1, 2, …, N. Measure the corresponding value of y, i = 1, 2, …, N. A 

model is fitted to these data and this model is used in a future study to estimate the true characteristic x using 

the less expensive or easily obtained measurement y. We deal with the situation where x is fixed (i.e., non-

random). 

Index Terms - calibration model; confidence region ; inverse regression. 

 

1. Introduction 

Let y1, y2 …, yN are independent p variate normally distributed random vectors. We deal only with the 

situation where x is fixed (i.e. controlled) 

Let Y= (y1, y2, …, yN) and X= (x1, x2, …, xN), Then Thus y ~ N (AX, )                    

The columns of Y are independent multariate  normal random vectors with  

E(Y) = AX  and  Cov (Vec (Y) = IN     (1) 

where A is a p  q matrix of unknown parameters and the variance covariance matrix  may be partly known 

or completely unknown. The matrix X (qN) is also assumed to be of rank q. Now consider another p1 

normally distributed random vector y, corresponding to an unknown value  of x and independent of Y in (1) 

and assume the same multivariate linear model (as in 1). Then we get 

E(y) = A and Cov (y) =  (2) 

If p = q = 1 then we have the problem of univariate calibration. If p and/or q is more than one, the problem 

become multivariate calibration.  

                    The confidence regions that are required in this context will be one of two  types, depending on 

the particular application. 

(i) Single use confidence regions: If the calibration data, i.e, Y in (1) is used to construct a confidence 

region for 1 corresponding to a single future observation yN+1. 

(ii) Multiple use confidence regions: If the calibration data is used to construct a sequence of confidence 

region, one at a time, for a sequence of unknown parameters 1, 2, 3, … we are in the set up of multiple use 

confidence regions. In other words, we have a sequence of independent future observations yN+i ~ N (Ai, ), i 

= 1, 2, …, and as soon as we observe yN+i, a confidence region is constructed for i using yN+i and the 

calibrated data Y. This is done a large number of times for i = 1, 2, … and the i's could be different. 

Some references on the construction of single use confidence regions are: Brown (1982), Fujikoshi and 

Nishii (1984), Oman and Wax (1984), Mathew and Zha (1996). The problem of constructing multiple use 

confidence regions addressed in Osborne (1991), Brown (1993) and Mathew and Zha (1997). The problem of 

deriving joint confidence regions is addressed in Thomas (1994) and Mathew and Sharma (1999). We consider 

univariate calibration through out this project. 
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2.Examples of Univariate Calibration 

Example - 2.1 

The estimation of blood alcohol concentration.  

This deals with the calibration of breath estimates of blood alcohol concentration, based on the results 

of a laboratory test. Here, the yj’s are breath estimates of blood alcohol concentrations and the xj’s are the 

actual concentration of alcohol in the blood, obtained by a laboratory test. The relevant data are based on a 

study conducted at Acadiana Criminalstics laboratory, New Iberia, Louisiana. Here we estimate unknown 

blood alcohol concentration , after obtaining the corresponding breath estimate say y0 using an appropriate 

fitted model between yi’s and xj’s. Such an estimation is preferable to the actual laboratory determination of 

the blood alcohol concentration, since it is much easier and faster to obtain the breath estimates.  

 yi = 0 + 1 xi + ei  

y0 = 0 + 1  + e0, i  = 1, 2, …, n.   (3)  

ei ~ N(0, 2), e0 ~ N(0, 2) 

Legal limit of safe driving is   0.10%. 

The problem is to estimate the unknown blood alcohol concentration  using breath estimate y0. 

 

Example -2.2  

The estimation of weight of rubber sheet 

The major crop of the farmers of Kerala is rubber. This is one of the main income yielding crops in Kerala. 

The usual method of making rubber sheets is through the collection of rubber latex through farmer societies. 

This way of collection reduces the hardship of the farmers, since they need not bother about the different 

stages of processing of rubber sheets. But one problem remains, that is, related to the immediate calculation of 

the weight of the sheet from 1kg rubber latex. It is very difficult to calculate the weight of the sheet from 1kg 

rubber latex and it consumes much time. This is an area where we would be able to make use of statistical 

calibration theory which may be of interest to farmers in the locality. 

For this we can proceed as follows. 

Take samples of rubber latex from each farmer. Number them respectively, and then prepare dry rubber sheet 

of each sample and weigh them. Let Y be the weight of rubber latex and X be the weight of rubber sheet. We 

can fit a suitable relationship between X and Y using available data of the form  

Y = a0 + a1x. Using this model we can estimate unknown value  of x for a particular value of y. 

Hence through the application of calibration theory we are in a position to measure the weight of each rubber 

sheet from the rubber latex at the earliest and again it helps the farmer and buyer to fix the price on the spot 

accurately. Thus this theory would be a milestone in the development of rubber plantation and business in 

Kerala. Similar methods can be applied for grading of rubber sheets as RMS-1, RMS-2, RMS-3, RMS-4 etc. 

the same method can be used for grading of spices like cardamom, determining the quality of tea leaves etc. 

2.3 Estimation of Enzyme Concentration in Blood Plasma 

            An example of data from a controlled calibration experiment is given in Aitchison and Dunsmore 

(1975). Enzyme concentration in blood plasma can be determined by a long and costly laboratory method 

where as an auto analyser method is quick and cheap. Here to calibrate the auto analyser, nine plasma samples 

selected to cover the range of enzyme concentrations have each been divided into four aliquots, one aliquot 

being assigned to the laboratory method and the other three to separate analyser determinations. 

2.4 Estimation of the Age of a Dead Hair 

       A biological study reported in Lieftinck Koeijers (1988). The problem is to estimate the age of a dead hair. 

It was noted that the age is related to several criteria, like body weight, eye lens weight and length of the hind 

foot, and furthermore, a linear relationship exists between the various criteria and age (on a log scale). The 

linear model parameters can be estimated based on a calibration experiment involving several hares of known 

ages. The model can be used to estimate the unknown age of a dead hare on the basis of the vector of 

measured criteria.  
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3. Analysis of Univariate Calibration 

Here we consider the models (3.1). ei ~ N(0, 2), e0 ~ N(0, 2), yi’s are  independent. yi, i = 1, 2, …, n 

are called calibration data. 

 

i) Estimation of  

y  = average of the yi’s 

x  = average of the xi’s 

Sxx = 
n

1i

 (xi – x )2 

 Syy = 
n

1i

 (yi – y )2   (4) 

Sxy = 
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If 0 and 1 are known, 
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Since 0 and 1 are unknown, replace by the estimators 0̂ and 1̂ . 
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ii) Confidence intervals for  

Not possible to obtain confidence intervals based on the distribution of ̂ ; the distributions depend on 

1. Consider, 

 y0 – 0̂ – 1̂   ~ N 
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Define 

 T() = 
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T() ~ student’s t distribution  with d.f. n- 2 

 { : |T()|  t/2}                   (10) 

This represents 100 (1 – ) % confidence region for . (Fieller’s theorem) 

 

Remark 

This need not be an interval. Is an interval if 




ˆ

ˆS 1xx
 > t/2, i.e., 

          if    H0 : 1 = 0 is rejected. 

 

4. Conclusion 

The earliest articles on calibration are due to Eisenhart (1939) and Fieller (1954), dealing with univariate 

calibration. Since then, numerous articles have appeared dealing with point and confidence set estimation in 

univariate calibration. An excellent review of there appears in the article by Osborne (1993) and in the book by 

Brown (1994). An important unsolved problem is the minimization of difficulties in the computational work 

associated with joint and multiple use confidence regions. Bayesian methods can also be developed for 

constructing more efficient confidence regions. This is another area which needs further research. Some such 

works are currently under investigation.However, the developments in multivariate calibration is fairly recent 

and some problems related in this area are not yet to be solved. 
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